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It is generally believed that two-dimensional turbulence is immune to intermittency possibly due to the
absence of vortex stretching. However, in turbulence created in a freely suspended soap film by electromag-
netic forcing, it is found that intermittency is not insignificant. We draw this conclusion based on the measured
velocity structure function Sp�l������vl�p��� l�p on scales l greater than the energy injection scale linj. The
scaling exponent �p vs p deviates from the expected linear relation and shows intermittent behavior comparable
to that observed in fully developed three-dimensional turbulence in wind tunnels. Our measurements demon-
strate that intermittency can be accounted for by the nonuniform distribution of saddle points in the flow.
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Existing experiments and theory suggest that two-
dimensional �2D� turbulence on large scales represents a pe-
culiar state of matter that is not far from thermal equilibrium.
This is surprising because the system is dissipative and
strongly driven by an external source. The experimental evi-
dence derives from the remarkable observation of Paret and
Tabeling, who showed that in 2D turbulence created in a
shallow layer of electrolyte, the energy spectrum E�k� exhib-
its a k−5/3 law, whereas the probability density function
�PDF� P��vl� of the velocity difference on scales l is, to a
good approximation, a Gaussian function �1�. This measure-
ment suggests that the energy transfer rate, which is propor-
tional to the skewness of P��vl�, is weak compared to its
three-dimensional �3D� counterparts and may be the cause of
weak intermittency. It has been recently postulated by L’vov
et al. �2� that this interesting behavior may be intimately
connected with the presence of a special dimension �dC

=4/3� in which the k−5/3 law holds but the enstrophy flux is
strictly zero. Thus, the dynamics of the system are governed
by the equipartition of enstrophy. They further demonstrated
that d=2 is not too remote from dC and the Gaussian statis-
tics still prevail. It thus comes as a surprise that in a 2D soap
film driven by electromagnetic forcing, the intermittency is
not negligible as anticipated. If we characterize the strength
of intermittency in terms of ���2�3−�6� ,� is only a factor
of 2 smaller than in fully developed 3D turbulence �3�. Here
�p is defined by the pth-order longitudinal velocity structure

function Sp�l��=���vl�p�����v��x� + l��−v��x��� · l̂�p��� l�p. In an ef-
fort to identify the source of intermittency, Sp�l� is compared
with the moments of the coarse-grained energy dissipation
rate �l

dis on scales l using the Kolmogorov refined similarity
hypothesis �K62� �4�. It is unclear at the outset whether K62
is applicable to 2D turbulence on large scales because the
energy transfer mechanism in 2D is entirely different from
that in 3D. However, our measurements show that K62 in its
original form works rather well for all moments up to p=9.
This implies that the coarse-grained energy transfer rate �l

t is
proportional to �l

dis in the inertial range �linj� l� lo�, and
both are connected with the saddle structures in the flow.
Here linj and lo are the energy injection and the outer scale of
turbulence.

The experiment was carried out in a freely suspended

horizontal soap film �7�7 cm2� driven by electromagnetic
forcing. The vrms is 	12 cm/s with the Taylor microscale
Reynolds number Re	
170. The film is supported by a
square plastic frame with two opposite sides made of metal
electrodes. The film is placed 	1 mm above a set of bar
magnets of alternating poles, which creates a one-
dimensional �1D� period magnetic field �Bz�x�
=B0 sin�
x /a�� normal to the film plane, where a=0.25 cm
is the width of a magnet. The electrodes allow a uniform
current I to be injected into the film, resulting in a spatially
periodic force field Fy =Fy0 sin�
x /a�. To minimize hydroly-
sis, the direction of I is switched at a fixed frequency f . A
computer-controlled feedback system allows the film thick-
ness �h
50 �m� and film-magnet distance to be maintained
�5�; the latter determines the linear damping force −�v� on
the film. The soap solution is made of distilled water
�400 ml�, detergent Dawn �5 ml�, glycerol �50 ml�, and am-
monium chloride salt �80 g�. Hollow glass beads �diam

10 �m� serve as tracers for the velocity measurement. For
small I, the base flow is a set of shear bands, known as the
Kolmogorov flow. The primary instability, when I increases,
is a set of vortices on a triangular lattice with the nearest
spacing of 2a /�3=0.29 cm, which sets the scale of energy
injection linj. Particle imaging velocimetry �PIV� was used to
measure the velocity field at a rate of 15 fps, and each ve-
locity field contains �2�104 vectors. The charged-coupled
device �CCD� camera �PIV-CAM 10-30, TSI� used consists
of 1000�1000 pixels, which maps to a 4.5�4.5 cm2 area.

Figure 1�a� shows an overlaid image of the velocity v��x��
and the enstrophy �x��2=�i,j��iv j −� jvi�2 /2 fields. An inter-
esting feature of the image is that the enstrophy is concen-
trated in patches, and strong long-lived vortices are nearly
axially symmetric. The weak vortices, on the other hand, are
susceptible to be torn by the straining motion of the flow and
are elongated. Figure 1�b� is for the same v��x�� field, but the
squared strain rate or the saddle point ��x��2=�i,j��iv j

+� jvi�2 /2 is plotted. By definition, the local fluid viscous
dissipation is given by �dis�x��=���x��2, where � is the viscos-
ity of the film. The figure shows that the distribution of ��x��2

is different from that of �x��2; the saddles are more con-
nected and populated between vortices. An ensemble of v��x��
such as this one allows us to calculate various statistical
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quantities of 2D turbulence. Of particular interest is the ve-
locity structure function Sp�l� and its relation to the locally
averaged saddles or equivalently the local dissipation rate,

�l
dis�x�� �

4


l2�
�x�−x����l/2

�dis�x���dx��. �1�

Among different moments, S2�l� and S3�l� hold a special
significance. The second moment represents the energy dis-
tribution on different scales. In our experiment, the shape of
S2�l� is sensitive to the forcing frequency, possibly due to a
competition between time scales of forcing and the energy
transfer. For high frequencies �f �3 Hz� ,S2�l� is not a power
law of l for l� linj, regardless of the magnitude of forcing.
For lower frequencies �f 	1 Hz�, on the other hand, a lim-
ited scaling range emerges. Figure 2�a� displays the measure-
ments with f =3 �circles, Re	=79.9� and 1 Hz �squares,
Re	=166.9�, respectively. One observes that although both
data display a well-developed enstrophy subrange, S2�l�
� l1.9±0.1, the large-scale behavior is entirely different. For
1 Hz,S2�l�� l2.3/3 over about a half decade in l. The scaling
exponent is 15% greater than the theoretically predicted 2/3
and was found to depend on Re	 systematically, i.e., �2

0.67±0.07 for Re	=110.3 and increases to �2
1±0.1 for
Re	=212.1. Similar to S2�l�, the third moment S�3��l� was

also found to deviate from the theoretical prediction as de-
lineated in Fig. 2�b�, where the subscript �3� stands for the
moment calculated without the absolute sign. Here one ob-
serves that S�3��l� is not linear in l but oscillates in space due
to the spatially periodic forcing in the experiment. This spa-
tial anisotropy, however, was not observed in the even mo-
ments Sp�l�. For all scales, S�3��l� is positive, showing that
the direction of energy transfer is from small to large scales
and is consistent with the inverse energy cascade of 2D tur-
bulence. For the rest of this paper, we will concentrate on the
data set taken with f =1 Hz and Re	=166.9.

In Fig. 3�a�, the normalized PDF of �vl on various scales
l=0.45, 0.68, 1.36, and 1.90 cm are plotted. As can be seen,
the center part of the PDFs can be fitted well by a Gaussian
distribution function �the dashed line�, but systematic devia-
tions are found in the wings of the PDFs, particularly for
small l. Each PDF consists of more than 5�106 data points
and the size of the data sets is thus comparable to the 3D
experiment �3�. Using the ranking order or the Zipf distribu-
tion of �vl �6�, it is possible to estimate the highest moment
pmax that can be calculated from a given data set. In our case,
pmax turns out to be 	9, which is smaller than pmax=12 �1�
and 14 �3� in earlier works. Figure 3�b� displays a set of Sp�l�
for l� linj. As shown, all moments scale as Sp�l�� l�p. Al-
though the scaling range is limited, the exponents �p none-
theless can be extracted from the slopes of the individual
curves. This is delineated as diamonds in the inset �a� of Fig.
4. If 2D turbulence is nonintermittent as suggested, �p would
be a linear function of p. This is clearly not the case in our
experiment; �p bends for p�4 and its initial slope of 1.18/3
is greater than 1/3 as shown by the solid line. The bending
of �p indicates that the velocity field in soap-film turbulence
is intermittent, and the large initial slope suggests that the
Kolmogorov-like scaling cannot apply to our system. To
compare our experiment with previous investigations �1,3�,
the relative scaling exponents

�p/�3=
d ln�Sp�l��

d ln�l� � d ln�S3�l��

d ln�l�
�

are plotted as squares in Fig. 4, where the overbvar repre-
sents the average over the inertial range. By plotting the ratio
of the derivatives as a function of l,

FIG. 1. �Color online� �a� The velocity v��x�� and the enstrophy
2�x�� fields. �b� The velocity and the square of strain �2�x�� fields.
The image size is 4�4 cm2.

FIG. 2. �Color online� �a� The second-order structure function
S2�l� measured with f =1 Hz �squares, Re	=166.9� and 3 Hz
�circles, Re	=79.9�. The injection scale linj is marked by the verti-
cal arrow and the outer scale lo
2 cm. The inset is the flatness Fl

at 1 Hz. �b� The third-order structure function S�3��l� with Re	

=166.9 and f =1 Hz. The inset is the skewness Sl.

FIG. 3. �Color online� �a� The normalized PDFs of �vl for vari-
ous scales. �b� Sp�l� vs l.
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d ln�Sp�l��
d ln�l� � d ln�S3�l��

d ln�l�

was found to be constant over a broader range of l and its
averaged value �p /�3 could be better determined than indi-
vidual �p �7�. In this experiment, however, we found that the
two methods yield essentially the same result, i.e., �p /�3

�p /�3, as evidenced by the closeness of squares and dia-
monds in the main figure. In Fig. 4 we also plot the data for
fully developed 3D turbulence �down triangles� measured by
Anselmet et al. �3� and the 2D data �triangle� by Paret �1�. As
will be shown below, if K62 is valid and �l obeys a
logarithmic-normal distribution �8�, the relative scaling ex-
ponent �p /�3 can be calculated explicitly with the result
�p /�3= p /3+ �� /18�3��3p− p2�, where ��=2�3−�6� charac-
terizes the width of the distribution of �l and is the only
adjustable parameter. For our experiment, a fitting procedure
yielded �
0.11. This value should be compared with �

0.2 for the 3D turbulence data �3� and �
0.03 for Paret’s
data �1�.

Despite the intermittency for large p, the low-order statis-
tics observed in our experiment are in reasonably good
agreement with Paret’s measurements �1� and with the nu-
merical simulation �9�. For instance, �i� the overall skewness
Sl=S�3��l� /S2�l�3/2 displayed in the inset of Fig. 2�b� is rather
small; it is 	8% near linj and decreases to 	2% for large

scales. The averaged value in the inertial range is S̄
=0.03±0.02. This is to be compared with the skewness of
5% seen in Paret’s experiment and 3% in the simulation. �ii�
Similar to Sl, the flatness Fl=S4�l� /S2�l�2 in the inset of Fig.

2�a� is not constant but varies from 3.25 near linj to 3.0 for
large scales. The average value F̄=3.1 agrees well with the
Gaussian value of 3. It should be emphasized that although S̄
and F̄ are reasonably consistent with the Gaussian statistics,
it does not imply that higher order statistics need to be so. As
the order p increases, rare events associated with the tails of
the PDFs �see Fig. 3�a�� become more prominent. Since
these rare events are l dependent, �p must be a nonlinear
function of p.

We next turn our attention to find whether the observed
intermittency can be accounted for in a similar fashion as
K62 �4�. This hypothesis has been the cornerstone for under-
standing 3D turbulence, and it would be interesting to see if
this important idea has any relevance to 2D turbulence. The
basic observation in 3D turbulence is that velocity fluctua-
tions possess a broad spectrum and that the globally aver-
aged energy dissipation rate � cannot account for rare, in-
tense local fluctuations. One way to fix this statistical bias is
to divide the spatial domain into a collection of ensembles of
size l, each characterized by a locally averaged energy dissi-
pation rate �l�x�� as defined in Eq. �1�. It was conjectured by
Kolmogorov that for the inertial range of scales, the PDF of
the stochastic variable V=�vl / �l�l�1/3 depends only on the
local Reynolds number Rel= �l�l�l�1/3�l /� and in the limit
Rel�1, the PDF is universal, independent of Rel. If one
further assumes the statistical independence between the ran-
dom variables V and �l�l�1/3 �10�, it follows that Sp�l�
���vl

p�= �Vp���l
p/3�lp/3=Cplp/3+�p/3 =Cpl�p�, where Cp is a

p-dependent constant, ��l
p�� l�p and �p�= p /3+�p/3. Thus, if

K62 is valid, one expects �p=�p� for all p. By using the ratio
of moments Sp�l� /S3�l�p/3 instead of the moment itself, the
K62 can be generalized and facilitates a better determination
of scaling exponents. This is the essence of extended self-
similarity and has been successfully applied to turbulence
with a low Re or with a nonclassical exponent ��3�1� �11�.
It is readily shown �p /�3= p /3+�p/3

* /�3, where �p/3
* =�p/3

− �p /3��1. If �l is distributed in a logarithmic-normal fashion,
�1=0 and �p/3

* =�p/3= �� /18��3p− p3�, where � is the width of
the ln��l� distribution �8�. The above discussion shows that
the reason �p deviates from the linear p dependence is be-
cause of the nontrivial distribution of �l characterized by �p/3.
It should be emphasized that though K62 has gained consid-
erable experimental and numerical support for 3D turbulence
�10,12–14�, its implication for 2D turbulence remains un-
clear and is analyzed below.

A difficulty in applying K62 to 2D turbulence is
that energy dissipation due to the fluid viscosity

�l
dis=�l

�������x�� �2�l� may not be entirely relevant to large-
scale velocity fluctuations because energy flux is reversed.
To our surprise, however, we found that �vl and �l

� are
strongly correlated in soap films. The coefficient of correla-

tion C�l�= ����vl�x��˜ �− ���vl�x��˜ ��� · ��l
��x��− ��l

��x����� / �s��vl
˜�s�l

�� is

plotted in the inset �b� of Fig. 4, where �vl�x��˜ is the averaged
longitudinal velocity difference on the circumference of a
randomly selected disk of diameter l ,�l

��x�� is the viscous
dissipation inside the disk, s��vl

˜� and s�l
� are their standard

deviations, and the angular bracket is the volume plus the

FIG. 4. �Color online� The main figure shows that �i� the relative
scaling exponents �p /�3 �diamonds� and �p /�3 �squares� measured
using different methods are consistent, �ii� �p /�3 are also consistent
with the local energy dissipation rate measurements ��p� �circles�,
and �iii� the intermittency in the film is stronger than that seen in
Ref. �1� �triangles� but weaker than in Ref. �3� �down triangles�.
The solid line is for �p /�3= p /3 and the dash line is the logarithmic
normal-model fit to our data ��	0.11�. Inset �a� displays �p mea-
sured directly from the slopes of the data sets on Fig. 3�b�. Inset �b�
displays the correlation coefficients between ��vl

˜� and �l
� in the

inertial range.
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time average. We observed that the correlation is about 70%
near linj and decreases to about 10% for large l. This degree
of correlation is in par with what was observed in the inertial
range of 3D turbulence �10,12–14�. We next proceeded to
calculate energy dissipation statistics within disks of diam-
eter l. The coarse-grained values of �l

dis�x�� are calculated
according to Eq. �1� and the scaling exponents �p

* are evalu-
ated based on an ensemble of disks. The resulting exponents,
��p�� p /3+�p/3

* /�3, can thus be compared with the relative
exponents �p /�3 calculated using �vl. As shown by the solid
circles in Fig. 4, the scaling exponents ��p� are nearly iden-
tical to �p /�3, indicating that intermittency in �vl are consis-
tent with the nonuniform distribution of �l

dis. For complete-
ness, we also included the air drag �l

����v��x��2�l in the
energy dissipation, �l

dis�x��=�l
��x��+�l

��x��. Here we found that
the scaling exponents �p

* are unaffected by the air contribu-
tion �data not shown�, suggesting that intermittency observed
in this experiment is due almost entirely to �l

�. The weak air
contribution is expected in the inertial range and is consistent
with our earlier findings that air drag is significant only for
l� l0 �5�.

It remains to be clarified the striking fact that the relative
scaling exponent �p /�3 can be accounted for by the intermit-
tency in the locally averaged dissipation field ���l

dis�p/3�
� l�p/3 with the result �p /�3
 p /3+ ��p/3− �p /3��1� /�3. The
finding is surprising because in 2D turbulence most of in-
jected energy is transferred to large l instead of being dissi-
pated in small l. Thus, the scaling behavior for the velocity
difference �vl on large scales should be determined by the
energy transfer rate �l

t rather than the local energy dissipation
rate �l

dis. However, using the Navier-Stokes equation with a

forcing term F� , it can be shown that the energy transfer rate
to large scales is given by �l

t=�l
inj−�l

dis, where �l
inj

= �F� �x�� ·v��x���l is the energy injection rate averaged over l.
This energy budget is exact scale by scale. In particular, in

the inertial range �linj� l� l0�, one expects �l
t�0. Our ob-

served scaling behavior therefore demands �l
t to be propor-

tional to �l
dis or �l

t=A�l
dis, where A�0 is a constant. In light

of the energy budget, �l
inj= �A+1��l

dis in the inertial range.
The above proportionalities ��l

t��l
dis��l

inj� make physical
sense, and they imply that regions of large energy injection
would on average dissipate more energy on small scales and
at the same time transfer more energy to large scales. Indeed
in 2D turbulence, longitudinal velocity fluctuations �vl were
found to correlate strongly with saddle points �2�x�� in the
flow �15�, which are responsible for energy dissipation as
well as for energy transfer to large scales. In a recent study,
we also found that when saddles are suppressed by polymers,
inverse energy cascade is terminated �16�. Thus, even though
turbulence in 2D and 3D is very different, both in hydrody-
namic structures and in the mechanism of energy transfer,
Kolmogorov’s central idea of cascade, i.e., a dynamic equi-
librium of energy flux �vl

3 / l through fluctuations of size l
and energy dissipation �l

dis within it, is remarkably preserved
in two dimensions.

To summarize, we found velocity fluctuations in the
inverse-energy-cascade subrange to be intermittent in 2D
flowing soap films. The intermittency correlates strongly
with coarse-grained saddle structures in the flow �or equiva-
lently the local viscous energy dissipation rate� in a manner
similar to K62. It is unclear why our film behaves differently
from previous studies �1�. One possible reason is the much
higher turbulent intensity in the film than in the shallow layer
of an electrolyte. The second possibility is the slight com-
pressibility �	10% � of the film. These issues need to be
sought out in future experiments.
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Grant No. DMR-0242284.
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